Direct Optical Resolution of 2, 2'-Dihydroxy-1, 1'-binaphthyl

Masatoshi KAWASHIMA* and Akihisa HIRAYAMA Kankyo Kagaku Center Co., Ltd., Kamariyacho, Kanazawa-ku, Yokohama 236

2, 2'- Dihydroxy-1, 1'-binaphthyl ($\underline{1}$) was directly resolved with $(1\underline{R}, 2\underline{R})$ -1, 2-diaminocyclohexane to afford (\underline{R})-(+)- $\underline{1}$ in a high yield with a high optical purity.

Optically active 2, 2'-dihydroxy-1, 1'-binaphthyl ($\underline{1}$) has been used as an effective atropisomeric compound in various asymmetric syntheses, $\underline{1}$) and the practical applications have been progressively carried out. Also synthetic methods of optically active $\underline{1}$ have been intensively investigated. For example, optical resolution of racemic $\underline{1}$ with a chiral amine \underline{via} its phosphoric ester, $\underline{2}$) enzymatic optical resolution of racemic $\underline{1}$ by host-guest complexation method, $\underline{4}$) and oxidative coupling of 2-naphthol using chiral amine-Cu(II) complex $\underline{5}$) were developed. However, these methods have disadvantages such as use of the expensive chiral amine, multi-step resolution including transformation of $\underline{1}$ to the ester, difficulty in acquisition of chiral host, and troubles in handling the chiral amine, respectively.

Here, we wish to report a convenient and practical method for the direct optical resolution of $\underline{1}$ with economical optically active amine, 1,2-diaminocyclohexane ($\underline{2}$), which dissolves all of the disadvantages in previous methods.

Racemic $\underline{1}$ 25.1 g (87.7 mmol) and $(1\underline{R}, 2\underline{R})$ - (-) - $\underline{2}$ ([α] $_{D}^{24}$ -36.7° (c 4.14, H₂0)) 10.0 g (87.6 mmol) were added to benzene (750 cm³). The mixture was heated to a homogeneous solution and cooled to room temperature. Precipitates were filtered and twice recrystallized from benzene (each 750 cm³) to afford 21.0 g of crystalline compound $\underline{3}$, which consisted of (R) - (+) -1,

 $(1\underline{R},2\underline{R})$ - (-) - $\underline{2}$, and benzene (1:1:2). $^{6)}$ Treatment of $\underline{3}$ with 1 mol dm⁻³ hydrochloric acid and methanol at room temperature gave (\underline{R}) - (+) - $\underline{1}$ (10.8 g, 37.7 mmol) in a yield of 86% based on the enantiomer presents in the racemate. Optical purity of the obtained (\underline{R}) - (+) - $\underline{1}$ $([\alpha]_{D}^{23} + 34.4^{\circ}(c\ 0.502, THF))$ was 94%. $^{7)}$ Evaporation of the mother liquor from the above crystallization gave oily residue; treatment with dilute hydrochloric acid as mentioned above gave (\underline{S}) - (-) - $\underline{1}$ in a yield of 57% with an optical purity of 62%. Complexation of the (\underline{S}) - (-) - $\underline{1}$ with $(1\underline{S},2\underline{S})$ - (+) - $\underline{2}$, recrystallization of the obtained crystalline precipitate from benzene, and treatment with dilute hydrochloric acid afforded (\underline{S}) - (-) - $\underline{1}$ with an optical purity of 96% in a yield of 84% based on the enantiomer presents in the racemate.

Also optically active <u>threo-1</u>, 2-diamino-1, 2-diphenylethane $(\underline{4})^{8}$ was effective for the resolution of $\underline{1}$. Resolution using $\underline{4}$ was carried out in a similar manner as that using $\underline{2}$. Thus, (\underline{R}) - (+) - $\underline{1}$ was obtained by the resolution with $(\underline{R},\underline{R})$ - (+) - $\underline{4}$ (0. P. 95%) in a yield of 78% based on the enantiomer presents in the racemate and in an optical purity of 92%.

As described above, direct resolution of $\underline{1}$ with optically active $\underline{2}$ provides a convenient and practical method for the synthesis of optically active $\underline{1}$.

References

- 1) For example, D. Seebach, A. K. Beck, S. Roggo, and A. Wonnacott, Chem. Ber., $\underline{118}$, 3673 (1985); B. M. Trost and D. J. Murphy, Organometallics, $\underline{4}$, 1143 (1985).
- 2) Y. Tamai, P. Heung-Cho, K. Iizuka, A. Okamura, and S. Miyano, Synthesis, 1990, 222; J. Jacques and C. Fouquey, Org. Synth., <u>67</u>, 1 (1988); L. K. Truesdale, ibid., <u>67</u>, 13 (1988).
- 3) For example, S. Miyano, K. Kawahara, Y. Inoue, and H. Hashimoto, Chem. Lett., 1987, 355.
- 4) For example, F. Toda and K. Tanaka, J. Org. Chem., <u>53</u>, 3607 (1988); F. Toda, K. Tanaka, L. Nassimbeni, and M. Niven, Chem. Lett., 1988, 1371.
- 5) J. Brussee, J. L. G. Groenedijk, J. M. te Koppele, and A. C. A. Jansen, Tetrahedron, <u>41</u>, 3313 (1985).
- 6) $\underline{3}$: mp 148-151 °C (released benzene molecule to whiten at above 80 °C); $^{1}\text{H-NMR} (\text{CDCl}_{3}) \delta = 1.00-2.00 \, (\text{m}, 8\text{H}, -(\text{CH}_{2})_{4}-), 3.60 \, (\text{br}, 10\text{H}, -\text{NH}_{2}, -0\text{H} \text{ and } \text{CH-N}), 7.13-8.33 \, (\text{m}, 12\text{H}, \text{Naph-H}), 7.35 \, (\text{s}, 12\text{H}, \text{PhH}); IR (KBr) 3450, 3380, 3300, 3060, 2950, 2860, 1620, 1600, 1515, 1460, 1380, 1360, 1230, 1210, 960, 820, 745, 695 cm⁻¹; <math>[\alpha]_{D}^{23}$ -16.1° (c 1.01, CHCl $_{3}$).
- 7) Optical rotation was compared to the following literature value of -35.5° to calculate the optical purity; S. Miyano, M. Tobita, M. Nawa, S. Sato, and H. Hashimoto, J. Chem. Soc., Chem. Commun., <u>1980</u>, 1233.
- 8) K. Saigo, N. Kubota, S. Takebayashi, and M. Hasegawa, Bull. Chem. Soc. Jpn., <u>59</u>, 931 (1986).